Dimension

Recall that the dimension of a ring R is the supremum of lengths of chains of prime ideals. If $\subseteq \subseteq R$ is an ideal, we say the dimension of I (or of $V(I)$) is $\operatorname{dim}(R / I)$.

One of our goals will be to show $\operatorname{dim}\left(k\left[x_{1}, \ldots, x_{n}\right]\right)=n$. (Recall that we can bound it below by n.)

Def: If $P \subseteq R$ is prime, the codimension or height of P is the supremum of lengths of chains of primes descending from P. (Note that $\operatorname{codim} P=\operatorname{dim} R_{p}$.)

For $I \subsetneq R$ any proper ideal, define

$$
\text { codim } I:=\min \{\omega \operatorname{com} P \mid P \supseteq I \text { is prime }\}
$$

We can extend the notion of dimension to modules:

Def: Let M be an R-module. The dimension of M is $\operatorname{dim} M:=\operatorname{dim} A n n M=\operatorname{dim} R / A n n M$.

Caution量 This can be confusing. If $I \subseteq R$ an ideal in
an integral domain, then if we consider I as an R-module, we have $A n n I=0$, so

$$
\operatorname{dim} \frac{T}{\uparrow}=\operatorname{dim} \operatorname{Ann} I=\operatorname{dim} R / 0=\operatorname{dim} R J
$$

whereas $\operatorname{dim} I=\operatorname{dim} R / I$.
as an ideal
So when we write dim, we typically mean the dim as un ideal.

Question: Let $I \subseteq R$ be an ideal. Why can't we define $\operatorname{codim} I=\operatorname{dim} R-\operatorname{dim} I$? (Note that $\operatorname{dim} I+\operatorname{codim} I \leq \operatorname{dim} R$)

Answer: We'll see that this is true in "nice" cases (e.g. if R is a domain, f.g. as a k-algebra), but it's not true more generally:

EX: Consider the following picture in \mathbb{A}^{3} :

In $k[x, y, z]$,
the union of
the $y z$-plane and
the x-axis is

cut out by the ideal $(x)(y, z)=(x y, x z)$.

Let $R=k[x, y, z] /(x y, x z)$

Then $(x) \subseteq(x, y) \subseteq(x, y, z)$ are all prime, so $\operatorname{dim} R \geq 2$. (In fact, $\operatorname{dim} R=2$).

Howe ver, if we set $I=(x-1, y, z) \subseteq R$, then $\operatorname{dim} I=\operatorname{dim} R / I=0$, since I is maxil.

But we have

$$
\operatorname{codim} I=\operatorname{dim} R_{I}=\operatorname{dim} k[x, y, z]_{I /(y, z)} \cong \operatorname{dim} k[x]_{(x-1)}=1 \text {. }
$$

so $\operatorname{dim} I+\operatorname{codim} I \neq \operatorname{dim} R$.

Intuition: $\operatorname{dim} R$ is the dimension of the largest component, whereas codim I gives the "local" codimension. i.e. The codim of I in the component it lies in.
connection to Artinian rings

Recall that we showed that
R is Artinian $\Leftrightarrow R$ is Noetherian and all prime ideals are maximal.

Moreover, R will have only finitely many prime ideals.

Since $\operatorname{dim} R=0 \Leftrightarrow$ all prince ideals are $\max ^{\prime} l$, we can translate this as follows:

Cor: R Artinian $\Leftrightarrow R$ Noetherian and $\operatorname{dim} R=0$. Moreover, if R is Artinian, spec R consists of finitely many points, all closed.

The principal Ideal Theorem

For the rest of the section, assume all rings are Noetherian.

Question: If $I=\left(a_{1}, \ldots, a_{n}\right)$, what is codim I ? Even more basic: What's codim (a)?

We can easily find the codim of primes contained in principal ideals:

Claim: Any prime P properly contained in a principal ideal $(x) \nsubseteq R$ has codim 0 .

Pf: Suppose $Q \nsubseteq P \not \subset(x)$ with Q prime. Then R / Q is an integral domain. So replace R with R / Q and assume R is an int. domain.

If $y \in P$, then $y=a x$ for some a. $x \notin P$, so $a \in P$. Thus $P=x P$. We can't apply Nakayama (x may not be in $J(R)$), but we showed via $C-H$ that
$(1-b) P=0$ for so me $b \in(x)$.
R is an int. domain, so $b=1$, a contradiction.

Krull's principal ideal theorem extends this to primes minimal over principal ideals:

Knoll's principal ideal Theorem: If $x \in R$ and P is minimal among primes containing x, then $\operatorname{codim} P \leq 1$.

For the proof of the PIT, we need one more tool: symbolic powers of ideals.

Def: Let $Q \subseteq R$ be prime. The nth symbolic power of Q is

$$
Q^{(n)}:=\underbrace{Q^{n} R_{Q}}_{\text {conponsinaction }} \cap R=\left\{r \in R \mid s r \in Q^{n} \text { for some } s \in R-Q\right\}
$$

Recall that $Q^{n} \subseteq Q^{(n)} \subseteq Q$ and $\left(Q^{(n)}\right)_{Q}=\left(Q_{Q}\right)^{n}$ (exer)

Ex: Let $R=k[x, y, z] /\left(x y-z^{2}\right)$ and $P=(x, z) \subseteq R$ prime.
$P^{2}=\left(x^{2}, x z, z^{2}\right)$, so $\quad P^{2} R_{p}=\left(x^{2}, x z, x y\right)=(x)$.
Thus, $P^{(2)}=\left(\frac{x}{1}\right) \cap R=\left(x^{2}, x z, z_{\substack{n \\ x_{y}}}^{x_{y}}, x\right)=(x)$
So $\quad P^{2} \underset{\substack{+ \\ \text { contains } \\ x}}{p_{\substack{(2)}}^{\subset} \underset{\substack{\text { contains } \\ z}}{p}}$

Proof of the PIT: let $x \in R, P$ minimal among primes containing x. We'll show that if $Q \underset{+}{\subset} P$ is prime, then $\operatorname{dim} R_{Q}=0$, so $\operatorname{codim} Q=0$. This shows codim $P \leq 1$.

Since $\operatorname{codim} P=\operatorname{dim} R_{p}=\operatorname{codim} P R_{p}$, we can replace R with R_{p} and assume R is local and P maximal.

Since P is minimal over (x), we have, by a previous corollary about Artinian rings, that $R /(x)$ is Artinian.

Thus, the chain

$$
(x)+Q \supseteq(x)+Q^{(2)} \supseteq(x)+Q^{(3)} \supseteq \ldots
$$

eventually stabilizes. Say $(x)+Q^{(n)}=(x)+Q^{(n+1)}$.
Then, in particular, $Q^{(n)} \subseteq(x)+Q^{(n+1)}$, so for $f \in Q^{(n)}$,
we can write $f=a x+g$, with $g \in Q^{(n+1)}$

$$
\begin{aligned}
\Rightarrow a x=f-g & \in Q^{(n)} \\
& Q^{n} R_{Q}^{\prime \prime} \cap R
\end{aligned}
$$

$$
\Rightarrow \quad \frac{a x}{1} \in Q^{n} R_{Q}
$$

$\Rightarrow b a x \in Q^{n} \quad$ for some $b \notin Q$.
$x \notin Q$ by minimality of P, so $b x \notin Q$.

Thus, $\quad \frac{a}{l} \in Q^{n} R_{Q} \Rightarrow a \in Q^{(n)}$.
So $\quad f=a x+g \in(x) Q^{(n)}+Q^{(n+1)}$
in $Q(n) \quad$ in $_{Q\left(n_{x, 1}\right)}$
$\Rightarrow Q^{(n)} \subseteq \underbrace{(x)}_{\text {Both of these }} Q^{(n)}+\underbrace{Q^{(n+1)}}_{\text {ideals }}$.
inclusion holds, and we have

$$
Q^{(n)}=(x) Q^{(n)}+Q^{(n+1)}
$$

Thus, if $\overline{Q^{(n)}}$ is the image of $Q^{(n)}$ in $R / Q^{(n+1)}$, we have $\overline{Q^{(n)}}=(x) \overline{Q^{(n)}}$.

Since R is local, $(x) \subseteq J(R)$. Since R is Noetherian, $Q^{(n)}$, and Thus $\overline{Q^{(n)}}$, is finitely generated. So we
can apply Nakayama, and get

$$
\overline{Q^{(n)}}=0 \text {, so } Q^{(n)}=Q^{(n+1)}
$$

Thus, $Q^{n} R_{Q}=Q^{n+1} R_{Q}$, which again by Nakayama,

$$
Q_{Q}^{n} \quad Q_{Q}^{n+1}
$$

says that $Q_{Q}^{n}=0$.
The corollary about Artinian rings says that $R_{Q} / O=R_{Q}$ must thus be Artinian, so $\operatorname{codim} Q=\operatorname{dim} R_{Q}=0$. \square

We can use this as the base case for an induction involving primes minimal over a fig. ideal:

Theorem: If $I=\left(x_{1}, \ldots, x_{c}\right) \subseteq R$, and P is minimal among primes containing I, then $\operatorname{codim} P \leq c$.

Pf: Again, codim $P=\operatorname{dim} R_{p}$, so assume R is local $w /$ max'l icleal P.

Then $P^{n} \subseteq I$ for $n \gg 0$ (again by cor. about Artinian rings).

Let P_{1} be a prime s.t. $P_{1} \subseteq P$ with no primes in
between.

We will show that P_{1} is minimal over an ideal generated by $c-1$ elements. By induction, codim $\leq c-1$, and were done.

By minimality of P, P_{1} cannot contain all the x_{i}. WHO G, assume $x_{1} \notin P_{1}$. Then P is minimal over $\left(P_{1}, x_{1}\right)$, so $P^{n} \subseteq\left(P_{1}, x_{1}\right)$ for $n \gg 0$, so in particular, $x_{i}^{n} \in\left(P_{1}, x_{1}\right)$ for all i.

That is, for each i, we can find $a_{i} \in R, y_{i} \in P_{1}$ s.t.

$$
x_{i}^{n}=a_{i} x_{1}+y_{i}
$$

Let $J=\left(y_{2}, \ldots, y_{c}\right)$. Then for some $m \gg 0, I^{m} \subseteq\left(x_{1}, J\right)$

So $P^{n+m} \subseteq I^{m} \subseteq\left(x_{1}, J\right)$, so P is minimal over $\left(x_{1}, J\right)$.

Thus, the image of P in R / J is minimal over $\left(\bar{x}_{1}\right)$.

So the PIT says $\operatorname{codim} \bar{P}=\operatorname{dim}(R / J)_{P}=\operatorname{dim} R / J \leq 1$.

So since $J \subseteq P_{1} \subsetneq P, \quad P_{1}$ must be minimal over J, which is generated by $c-1$ elements, so we've done.

This immediately gives us a descending chain condition for prime ideals in a Noetherian ring:

Cor: let P be a prime idea in a Noetherian ring. Then any strictly decreasing chain of prime ideals

$$
P \supset P_{1} \supsetneq P_{2} \nsupseteq \ldots
$$

has finite length, bounded above by the number of generators of P.

In particular, since $\left(x_{1}, \ldots, x_{2}\right) \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ has descending chain $\left(x_{1}, \ldots, x_{c}\right) \nsupseteq\left(x_{2}, \ldots, x_{c}\right) \nsupseteq \nsupseteq\left(x_{c}\right) \nsupseteq 0$, we know its codim is $\geq c$. The above gives an upper bound, so we have:

Cor The ideal $\left(x_{1}, \ldots, x_{c}\right) \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ has codimension c.

This doesn't quite suffice yet to compute the dim of the poly. ring, but well be able to soon.

There's a partial converse to the PIT:

Cor: If P is prime of codim c, then P is minimal over an icleal generated by c elements.

Pf: By induction on C. If $c=0$, any prime of codim 0
is minimal over 0 , so assume $c \geq 1$.

Let Q_{1}, \ldots, Q_{n} be the minimal primes contained in P. Then they are minimal over $0=\operatorname{Ann}(R / 0)$, so they are associated primes of O. Since R is Noethurian, there must only be finitely many.
$P \neq Q_{i}$ for any i since $c \geq 1$. Thus, by Prime avoidance

$$
P \neq U Q_{i}
$$

So we can find $x_{1} \in P \backslash\left(\cup Q_{i}\right)$.

Primes in $P /\left(x_{1}\right)$ correspond to primes in P containing x_{1}, so codim $P /\left(x_{1}\right) \leq c-1$. By induction, $P /\left(x_{1}\right)$ is minimal over an ideal generated by at most $c-1$ elements. Let x_{2}, \ldots, x_{d} be lifts of these ells in P.

Then P is minimal over $\left(x_{1}, \ldots, x_{d}\right)$ with $d \leqslant c$. But $c=\operatorname{codim} P \leq d$ by the Theorem. Thus $d=c$.

The theorem also leads to an important corollary about UFOs.

Cor: Let R be a (Noethurian) integral domain. R is a UFD iff every codim 1 prime of R is principal.

Pf: $(<)$ If every irred. elf is prime, then factorizations are unique (and they exist by Noetherian). Thus, it suffices to show any irreducible $f \in R$ is prime.

Let P be a prime minimal over (f). Then codim $P \leq 1$. If $\operatorname{codim} P=0$, then $P=0$. Thus $\operatorname{codim} P=1$, so P is principal: $P=(p)$.

Thus, $f=p u$, some u. Since f is irreducible, u is a unit, so $(f)=(p)$, so f is prime.

Conversely, assume R is a UFD and $P \subseteq R$ a codim 1 prime. Then P is minimal over some (f). Let

$$
f=\pi p_{i}^{e_{i}}
$$

be its prime factorization. Then we showed that the associated primes are $\left(p_{i}\right)$. In particular, the minimal primes over $\operatorname{Ann}_{R}(R /(f))=(f)$ are all principal.

